Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.277
Filtrar
1.
Cell Rep Methods ; 4(4): 100757, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38631345

RESUMO

Cross-disease genome-wide association studies (GWASs) unveil pleiotropic loci, mostly situated within the non-coding genome, each of which exerts pleiotropic effects across multiple diseases. However, the challenge "W-H-W" (namely, whether, how, and in which specific diseases pleiotropy can inform clinical therapeutics) calls for effective and integrative approaches and tools. We here introduce a pleiotropy-driven approach specifically designed for therapeutic target prioritization and evaluation from cross-disease GWAS summary data, with its validity demonstrated through applications to two systems of disorders (neuropsychiatric and inflammatory). We illustrate its improved performance in recovering clinical proof-of-concept therapeutic targets. Importantly, it identifies specific diseases where pleiotropy informs clinical therapeutics. Furthermore, we illustrate its versatility in accomplishing advanced tasks, including pathway crosstalk identification and downstream crosstalk-based analyses. To conclude, our integrated solution helps bridge the gap between pleiotropy studies and therapeutics discovery.


Assuntos
Pleiotropia Genética , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
2.
Nat Commun ; 15(1): 2655, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531894

RESUMO

Genetic pleiotropy is abundant across spatially distributed brain characteristics derived from one neuroimaging modality (e.g. structural, functional or diffusion magnetic resonance imaging [MRI]). A better understanding of pleiotropy across modalities could inform us on the integration of brain function, micro- and macrostructure. Here we show extensive genetic overlap across neuroimaging modalities at a locus and gene level in the UK Biobank (N = 34,029) and ABCD Study (N = 8607). When jointly analysing phenotypes derived from structural, functional and diffusion MRI in a genome-wide association study (GWAS) with the Multivariate Omnibus Statistical Test (MOSTest), we boost the discovery of loci and genes beyond previously identified effects for each modality individually. Cross-modality genes are involved in fundamental biological processes and predominantly expressed during prenatal brain development. We additionally boost prediction of psychiatric disorders by conditioning independent GWAS on our multimodal multivariate GWAS. These findings shed light on the shared genetic mechanisms underlying variation in brain morphology, functional connectivity, and tissue composition.


Assuntos
Estudo de Associação Genômica Ampla , Neuroimagem , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Pleiotropia Genética , Encéfalo/anatomia & histologia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
3.
Neuropsychopharmacology ; 49(6): 1033-1041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402365

RESUMO

Patients with severe mental disorders such as bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) show a substantial reduction in life expectancy, increased incidence of comorbid medical conditions commonly observed with advanced age and alterations of aging hallmarks. While severe mental disorders are heritable, the extent to which genetic predisposition might contribute to accelerated cellular aging is not known. We used bivariate causal mixture models to quantify the trait-specific and shared architecture of mental disorders and 2 aging hallmarks (leukocyte telomere length [LTL] and mitochondrial DNA copy number), and the conjunctional false discovery rate method to detect shared genetic loci. We integrated gene expression data from brain regions from GTEx and used different tools to functionally annotate identified loci and investigate their druggability. Aging hallmarks showed low polygenicity compared with severe mental disorders. We observed a significant negative global genetic correlation between MDD and LTL (rg = -0.14, p = 6.5E-10), and no significant results for other severe mental disorders or for mtDNA-cn. However, conditional QQ plots and bivariate causal mixture models pointed to significant pleiotropy among all severe mental disorders and aging hallmarks. We identified genetic variants significantly shared between LTL and BD (n = 17), SCZ (n = 55) or MDD (n = 19), or mtDNA-cn and BD (n = 4), SCZ (n = 12) or MDD (n = 1), with mixed direction of effects. The exonic rs7909129 variant in the SORCS3 gene, encoding a member of the retromer complex involved in protein trafficking and intracellular/intercellular signaling, was associated with shorter LTL and increased predisposition to all severe mental disorders. Genetic variants underlying risk of SCZ or MDD and shorter LTL modulate expression of several druggable genes in different brain regions. Genistein, a phytoestrogen with anti-inflammatory and antioxidant effects, was an upstream regulator of 2 genes modulated by variants associated with risk of MDD and shorter LTL. While our results suggest that shared heritability might play a limited role in contributing to accelerated cellular aging in severe mental disorders, we identified shared genetic determinants and prioritized different druggable targets and compounds.


Assuntos
Senescência Celular , Transtorno Depressivo Maior , Pleiotropia Genética , Humanos , Senescência Celular/genética , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Bipolar/genética , Transtornos Mentais/genética , Esquizofrenia/genética , DNA Mitocondrial/genética , Predisposição Genética para Doença/genética , Variações do Número de Cópias de DNA/genética
4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38330300

RESUMO

Leg weakness is a prevalent health condition in pig farms. The augmentation of cannon bone circumference and bone mineral density can effectively improve limb strength in pigs and alleviate leg weakness. This study measured forelimb cannon bone circumference (fCBC) and rear limb cannon bone circumference (rCBC) using an inelastic tapeline and rear limb metatarsal area bone mineral density (raBMD) using a dual-energy X-ray absorptiometry bone density scanner. The samples of Yorkshire castrated boars were genotyped using a 50K single-nucleotide polymorphism (SNP) array. The SNP-chip data were imputed to the level of whole-genome sequencing data (iWGS). This study used iWGS data to perform genome-wide association studies and identified novel significant SNPs associated with fCBC on SSC6, SSC12, and SSC13, rCBC on SSC12 and SSC14, and raBMD on SSC7. Based on the high phenotypic and genetic correlations between CBC and raBMD, multi-trait meta-analysis was performed to identify pleiotropic SNPs. A significant potential pleiotropic quantitative trait locus (QTL) regulating both CBC and raBMD was identified on SSC15. Bayes fine mapping was used to establish the confidence intervals for these novel QTLs with the most refined confidence interval narrowed down to 56 kb (15.11 to 15.17 Mb on SSC12 for fCBC). Furthermore, the confidence interval for the potential pleiotropic QTL on SSC15 in the meta-analysis was narrowed down to 7.45 kb (137.55 to137.56 Mb on SSC15). Based on the biological functions of genes, the following genes were identified as novel regulatory candidates for different phenotypes: DDX42, MYSM1, FTSJ3, and MECOM for fCBC; SMURF2, and STC1 for rCBC; RGMA for raBMD. Additionally, RAMP1, which was determined to be located 23.68 kb upstream of the confidence interval of the QTL on SSC15 in the meta-analysis, was identified as a potential pleiotropic candidate gene regulating both CBC and raBMD. These findings offered valuable insights for identifying pathogenic genes and elucidating the genetic mechanisms underlying CBC and BMD.


Leg weakness, a highly prevalent health condition in pig breeding farms, adversely affects the lifespan of breeding pigs. The augmentation of cannon bone circumference (CBC) and bone mineral density (BMD), which are objective measures of limb strength in pigs, can effectively alleviate leg weakness. To identify candidate genes regulating CBC and BMD in pigs, this study performed single-trait genome-wide association studies and multi-trait meta-analysis on all individuals with phenotype data. Additionally, the confidence intervals of quantitative trait locus (QTL) were determined using Bayesian methods. Four CBC-associated QTLs and one BMD-associated QTL were identified. Additionally, one potential pleiotropic QTL associated with both CBC and rear limb metatarsal area BMD (raBMD) was identified. This study demonstrated that DDX42, MYSM1, FTSJ3, and MECOM were candidate genes regulating forelimb CBC, while SMURF2 and STC1 were candidate genes regulating rear limb CBC. Additionally, RGMA was demonstrated to regulate raBMD, while RAMP1 was identified as a potential pleiotropic gene regulating both CBC and raBMD. The findings of this study provide valuable insights into the genetic mechanisms underlying limb growth and bone mineral accumulation.


Assuntos
Densidade Óssea , Estudo de Associação Genômica Ampla , Suínos/genética , Masculino , Animais , Densidade Óssea/genética , Estudo de Associação Genômica Ampla/veterinária , Teorema de Bayes , Pleiotropia Genética , Locos de Características Quantitativas , Fenótipo , Polimorfismo de Nucleotídeo Único
5.
Genome Med ; 16(1): 21, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308367

RESUMO

BACKGROUND: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS: Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS: The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS: This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Feminino , Fenótipo , Locos de Características Quantitativas , Pleiotropia Genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
6.
Nucleic Acids Res ; 52(D1): D871-D881, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941154

RESUMO

Large-scale genome-wide association studies (GWAS) have provided profound insights into complex traits and diseases. Yet, deciphering the fine-scale molecular mechanisms of how genetic variants manifest to cause the phenotypes remains a daunting task. Here, we present COLOCdb (https://ngdc.cncb.ac.cn/colocdb), a comprehensive genetic colocalization database by integrating more than 3000 GWAS summary statistics and 13 types of xQTL to date. By employing two representative approaches for the colocalization analysis, COLOCdb deposits results from three key components: (i) GWAS-xQTL, pair-wise colocalization between GWAS loci and different types of xQTL, (ii) GWAS-GWAS, pair-wise colocalization between the trait-associated genetic loci from GWASs and (iii) xQTL-xQTL, pair-wise colocalization between the genetic loci associated with molecular phenotypes in xQTLs. These results together represent the most comprehensive colocalization analysis, which also greatly expands the list of shared variants with genetic pleiotropy. We expect that COLOCdb can serve as a unique and useful resource in advancing the discovery of new biological mechanisms and benefit future functional studies.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Locos de Características Quantitativas , Fenótipo , Pleiotropia Genética , Polimorfismo de Nucleotídeo Único
7.
PLoS Comput Biol ; 19(12): e1011686, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060592

RESUMO

Genome-wide association studies (GWAS) have successfully identified over two hundred thousand genotype-trait associations. Yet some challenges remain. First, complex traits are often associated with many single nucleotide polymorphisms (SNPs), most with small or moderate effect sizes, making them difficult to detect. Second, many complex traits share a common genetic basis due to 'pleiotropy' and and though few methods consider it, leveraging pleiotropy can improve statistical power to detect genotype-trait associations with weaker effect sizes. Third, currently available statistical methods are limited in explaining the functional mechanisms through which genetic variants are associated with specific or multiple traits. We propose multi-GPA-Tree to address these challenges. The multi-GPA-Tree approach can identify risk SNPs associated with single as well as multiple traits while also identifying the combinations of functional annotations that can explain the mechanisms through which risk-associated SNPs are linked with the traits. First, we implemented simulation studies to evaluate the proposed multi-GPA-Tree method and compared its performance with existing statistical approaches. The results indicate that multi-GPA-Tree outperforms existing statistical approaches in detecting risk-associated SNPs for multiple traits. Second, we applied multi-GPA-Tree to a systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), and to a Crohn's disease (CD) and ulcertive colitis (UC) GWAS, and functional annotation data including GenoSkyline and GenoSkylinePlus. Our results demonstrate that multi-GPA-Tree can be a powerful tool that improves association mapping while facilitating understanding of the underlying genetic architecture of complex traits and potential mechanisms linking risk-associated SNPs with complex traits.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Simulação por Computador , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Pleiotropia Genética/genética
8.
BMC Genomics ; 24(1): 759, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082214

RESUMO

Genetic pleiotropy refers to the simultaneous association of a gene with multiple phenotypes. It is widely distributed in the whole genome and can help to understand the common genetic mechanism of diseases or traits. In this study, a multivariate response best-subset selection (MRBSS) model based pleiotropic association analysis method is proposed. Different from the traditional genetic association model, the high-dimensional genotypic data are viewed as response variables while the multiple phenotypic data as predictor variables. Moreover, the response best-subset selection procedure is converted into an 0-1 integer optimization problem by introducing a separation parameter and a tuning parameter. Furthermore, the model parameters are estimated by using the curve search under the modified Bayesian information criterion. Simulation experiments show that the proposed method MRBSS remarkably reduces the computational time, obtains higher statistical power under most of the considered scenarios, and controls the type I error rate at a low level. The application studies in the datasets of maize yield traits and pig lipid traits further verifies the effectiveness.


Assuntos
Pleiotropia Genética , Estudo de Associação Genômica Ampla , Animais , Suínos , Teorema de Bayes , Fenótipo , Genótipo , Simulação por Computador , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
9.
Am J Hum Genet ; 110(11): 1863-1874, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37879338

RESUMO

Genome-wide association studies (GWASs) across thousands of traits have revealed the pervasive pleiotropy of trait-associated genetic variants. While methods have been proposed to characterize pleiotropic components across groups of phenotypes, scaling these approaches to ultra-large-scale biobanks has been challenging. Here, we propose FactorGo, a scalable variational factor analysis model to identify and characterize pleiotropic components using biobank GWAS summary data. In extensive simulations, we observe that FactorGo outperforms the state-of-the-art (model-free) approach tSVD in capturing latent pleiotropic factors across phenotypes while maintaining a similar computational cost. We apply FactorGo to estimate 100 latent pleiotropic factors from GWAS summary data of 2,483 phenotypes measured in European-ancestry Pan-UK BioBank individuals (N = 420,531). Next, we find that factors from FactorGo are more enriched with relevant tissue-specific annotations than those identified by tSVD (p = 2.58E-10) and validate our approach by recapitulating brain-specific enrichment for BMI and the height-related connection between reproductive system and muscular-skeletal growth. Finally, our analyses suggest shared etiologies between rheumatoid arthritis and periodontal condition in addition to alkaline phosphatase as a candidate prognostic biomarker for prostate cancer. Overall, FactorGo improves our biological understanding of shared etiologies across thousands of GWASs.


Assuntos
Artrite Reumatoide , Estudo de Associação Genômica Ampla , Masculino , Humanos , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial , Fenótipo , Encéfalo , Artrite Reumatoide/genética , Polimorfismo de Nucleotídeo Único/genética , Pleiotropia Genética
10.
Behav Brain Sci ; 46: e211, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694917

RESUMO

In discussing the relationship between genetically influenced differences and educational attainment (EA), Burt employs the concept of downward causation. I note the similarities between Burt's concept of downward causation and the sociogenomics concept of vertical pleiotropy and argue that her discussion of downward causation introduces an unnecessary normative component. The core problem concerns not the appropriateness of phenotypes that influence EA but mistaken assumptions about which phenotypes are being predicted.


Assuntos
Escolaridade , Pleiotropia Genética , Humanos , Fenótipo
11.
Ann N Y Acad Sci ; 1526(1): 99-113, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37350250

RESUMO

Genes are often pleiotropic and plastic in their expression, features which increase and diversify the functionality of the genome. The foraging (for) gene in Drosophila melanogaster is highly pleiotropic and a long-standing model for studying individual differences in behavior and plasticity from ethological, evolutionary, and genetic perspectives. Its pleiotropy is known to be linked to its complex molecular structure; however, the downstream pathways and interactors remain mostly elusive. To uncover these pathways and interactors and gain a better understanding of how pleiotropy and plasticity are achieved at the molecular level, we explore the effects of different for alleles on gene expression at baseline and in response to 4 h of food deprivation, using RNA sequencing analysis in different Drosophila larval tissues. The results show tissue-specific transcriptomic dynamics influenced by for allelic variation and food deprivation, as well as genotype by treatment interactions. Differentially expressed genes yielded pathways linked to previously described for phenotypes and several potentially novel phenotypes. Together, these findings provide putative genes and pathways through which for might regulate its varied phenotypes in a pleiotropic, plastic, and gene-structure-dependent manner.


Assuntos
Drosophila melanogaster , Transcriptoma , Animais , Drosophila melanogaster/genética , Fenótipo , Larva/fisiologia , Pleiotropia Genética
12.
Philos Trans R Soc Lond B Biol Sci ; 378(1877): 20220051, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37004729

RESUMO

What causes evolution to be repeatable is a fundamental question in evolutionary biology. Pleiotropy, i.e. the effect of an allele on multiple traits, is thought to enhance repeatability by constraining the number of available beneficial mutations. Additionally, pleiotropy may promote repeatability by allowing large fitness benefits of single mutations via adaptive combinations of phenotypic effects. Yet, this latter evolutionary potential may be reaped solely by specific types of mutations able to realize optimal combinations of phenotypic effects while avoiding the costs of pleiotropy. Here, we address the interaction of gene pleiotropy and mutation type on evolutionary repeatability in a meta-analysis of experimental evolution studies with Escherichia coli. We hypothesize that single nucleotide polymorphisms (SNPs) are principally able to yield large fitness benefits by targeting highly pleiotropic genes, whereas indels and structural variants (SVs) provide smaller benefits and are restricted to genes with lower pleiotropy. By using gene connectivity as proxy for pleiotropy, we show that non-disruptive SNPs in highly pleiotropic genes yield the largest fitness benefits, since they contribute more to parallel evolution, especially in large populations, than inactivating SNPs, indels and SVs. Our findings underscore the importance of considering genetic architecture together with mutation type for understanding evolutionary repeatability. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.


Assuntos
Escherichia coli , Pleiotropia Genética , Mutação , Fenótipo , Escherichia coli/genética , Alelos
13.
PLoS Comput Biol ; 19(4): e1010445, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37022993

RESUMO

Components of immune systems face significant selective pressure to efficiently use organismal resources, mitigate infection, and resist parasitic manipulation. A theoretically optimal immune defense balances investment in constitutive and inducible immune components depending on the kinds of parasites encountered, but genetic and dynamic constraints can force deviation away from theoretical optima. One such potential constraint is pleiotropy, the phenomenon where a single gene affects multiple phenotypes. Although pleiotropy can prevent or dramatically slow adaptive evolution, it is prevalent in the signaling networks that compose metazoan immune systems. We hypothesized that pleiotropy is maintained in immune signaling networks despite slowed adaptive evolution because it provides some other advantage, such as forcing network evolution to compensate in ways that increase host fitness during infection. To study the effects of pleiotropy on the evolution of immune signaling networks, we used an agent-based modeling approach to evolve a population of host immune systems infected by simultaneously co-evolving parasites. Four kinds of pleiotropic restrictions on evolvability were incorporated into the networks, and their evolutionary outcomes were compared to, and competed against, non-pleiotropic networks. As the networks evolved, we tracked several metrics of immune network complexity, relative investment in inducible and constitutive defenses, and features associated with the winners and losers of competitive simulations. Our results suggest non-pleiotropic networks evolve to deploy highly constitutive immune responses regardless of parasite prevalence, but some implementations of pleiotropy favor the evolution of highly inducible immunity. These inducible pleiotropic networks are no less fit than non-pleiotropic networks and can out-compete non-pleiotropic networks in competitive simulations. These provide a theoretical explanation for the prevalence of pleiotropic genes in immune systems and highlight a mechanism that could facilitate the evolution of inducible immune responses.


Assuntos
Parasitos , Animais , Fenótipo , Parasitos/genética , Imunidade , Evolução Biológica , Pleiotropia Genética/genética
14.
PLoS Genet ; 19(3): e1010664, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36943844

RESUMO

Pleiotropy-when a single gene controls two or more seemingly unrelated traits-has been shown to impact genes with effects on flowering time, leaf architecture, and inflorescence morphology in maize. However, the genome-wide impact of biological pleiotropy across all maize phenotypes is largely unknown. Here, we investigate the extent to which biological pleiotropy impacts phenotypes within maize using GWAS summary statistics reanalyzed from previously published metabolite, field, and expression phenotypes across the Nested Association Mapping population and Goodman Association Panel. Through phenotypic saturation of 120,597 traits, we obtain over 480 million significant quantitative trait nucleotides. We estimate that only 1.56-32.3% of intervals show some degree of pleiotropy. We then assess the relationship between pleiotropy and various biological features such as gene expression, chromatin accessibility, sequence conservation, and enrichment for gene ontology terms. We find very little relationship between pleiotropy and these variables when compared to permuted pleiotropy. We hypothesize that biological pleiotropy of common alleles is not widespread in maize and is highly impacted by nuisance terms such as population structure and linkage disequilibrium. Natural selection on large standing natural variation in maize populations may target wide and large effect variants, leaving the prevalence of detectable pleiotropy relatively low.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Zea mays/genética , Fenótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Pleiotropia Genética
15.
Hum Genet ; 142(4): 507-522, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36917350

RESUMO

Age-related macular degeneration (AMD), cataract, and glaucoma are leading causes of blindness worldwide. Previous genome-wide association studies (GWASs) have revealed a variety of susceptible loci associated with age-related ocular disorders, yet the genetic pleiotropy and causal genes across these diseases remain poorly understood. By leveraging large-scale genetic and observational data from ocular disease GWASs and UK Biobank (UKBB), we found significant pairwise genetic correlations and consistent epidemiological associations among these ocular disorders. Cross-disease meta-analysis uncovered seven pleiotropic loci, three of which were replicated in an additional cohort. Integration of variants in pleiotropic loci and multiple single-cell omics data identified that Müller cells and astrocytes were likely trait-related cell types underlying ocular comorbidity. In addition, we comprehensively integrated eye-specific gene expression quantitative loci (eQTLs), epigenomic profiling, and 3D genome data to prioritize causal pleiotropic genes. We found that pleiotropic genes were essential in nerve development and eye pigmentation, and targetable by aflibercept and pilocarpine for the treatment of AMD and glaucoma. These findings will not only facilitate the mechanistic research of ocular comorbidities but also benefit the therapeutic optimization of age-related ocular diseases.


Assuntos
Glaucoma , Degeneração Macular , Humanos , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Degeneração Macular/genética , Glaucoma/genética , Polimorfismo de Nucleotídeo Único
16.
Neurobiol Aging ; 124: 117-128, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740554

RESUMO

Recent genome-wide association studies suggested shared genetic components between neurodegenerative diseases. However, pleiotropic association patterns among them remain poorly understood. We here analyzed 4 major neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), and found suggestively positive genetic correlation. We next implemented a gene-centric pleiotropy analysis with a powerful method called PLACO and detected 280 pleiotropic associations (226 unique genes) with these diseases. Functional analyses demonstrated that these genes were enriched in the pancreas, liver, heart, blood, brain, and muscle tissues; and that 42 pleiotropic genes exhibited drug-gene interactions with 341 drugs. Using Mendelian randomization, we discovered that AD and PD can increase the risk of developing ALS, and that AD and ALS can also increase the risk of developing FTD, respectively. Overall, this study provides in-depth insights into shared genetic components and causal relationship among the 4 major neurodegenerative diseases, indicating genetic overlap and causality commonly drive their co-occurrence. It also has important implications on the etiology understanding, drug development and therapeutic targets for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Parkinson , Doença de Pick , Humanos , Doenças Neurodegenerativas/genética , Demência Frontotemporal/genética , Esclerose Amiotrófica Lateral/genética , Estudo de Associação Genômica Ampla/métodos , Pleiotropia Genética/genética , Doença de Alzheimer/genética , Doença de Parkinson/genética
17.
Nat Genet ; 55(3): 365-366, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36854839
18.
Nat Genet ; 55(3): 389-398, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823319

RESUMO

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Assuntos
Biologia Celular , Células , Doença , Estudos de Associação Genética , Pleiotropia Genética , Estudos de Associação Genética/métodos , Humanos , Ubiquitinação/genética , Processamento Pós-Transcricional do RNA/genética , Células/metabolismo , Células/patologia , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/tendências , Doença/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Estudo de Associação Genômica Ampla , Fenótipo , Doenças Autoimunes/genética , Doenças Autoimunes/patologia
19.
Genet Epidemiol ; 47(2): 135-151, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682072

RESUMO

BACKGROUND: Mendelian randomization (MR) leverages genetic data as an instrumental variable to provide estimates for the causal effect of an exposure X on a health outcome Y that is robust to confounding. Unfortunately, horizontal pleiotropy-the direct association of a genetic variant with multiple phenotypes-is highly prevalent and can easily render a genetic variant an invalid instrument. METHODS: Building on existing work, we propose a simple method for leveraging sex-specific genetic associations to perform weak and pleiotropy-robust MR analysis. This is achieved by constructing an MR estimator in which pleiotropy is perfectly removed by cancellation, while placing it within the powerful machinery of the robust adjusted profile score (MR-RAPS) method. Pleiotropy cancellation has the attractive property that it removes heterogeneity and therefore justifies a statistically efficient fixed effects model. We extend the method from the typical two-sample summary-data MR setting to the one-sample setting by adapting the technique of Collider-Correction. Simulation studies and applied examples are used to assess how the sex-stratified MR-RAPS estimator performs against other common approaches. RESULTS: The sex-stratified MR-RAPS method is shown to be robust to pleiotropy even in cases where all genetic variants violated the standard Instrument Strength Independent of Direct Effect assumption. In some cases where the strength of the pleiotropic effect additionally varied by sex (and so perfect cancellation was not achieved), over-dispersed MR-RAPS implementations can still consistently estimate the true causal effect. In applied analyses, we investigate the causal effect of waist-hip ratio (WHR), an important marker of central obesity, on a range of downstream traits. While the conventional approaches suggested paradoxical links between WHR and height and body mass index, the sex-stratified approach obtained a more realistic null effect. Nonzero effects were also detected for systolic and diastolic blood pressure as well as high-density and low-density lipoprotein cholesterol. DISCUSSION: We provide a simple but attractive method for weak and pleiotropy robust causal estimation of sexually dimorphic traits on downstream outcomes, by combining several existing approaches in a novel fashion.


Assuntos
Análise da Randomização Mendeliana , Modelos Genéticos , Humanos , Análise da Randomização Mendeliana/métodos , Pleiotropia Genética , Variação Genética , Causalidade , Estudo de Associação Genômica Ampla
20.
Brain ; 146(4): 1686-1696, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36059063

RESUMO

Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic architecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hypothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead to similar overlaps at the macroscale brain level such as large-scale brain functional networks. We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of pleiotropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state functional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric conditions. Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic (rTranscriptomic) correlations with moderate to high concordance: rGenetic-rFunctional connectivity = 0.71 [0.40-0.87] and rTranscriptomic-rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles associated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were mainly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate general mechanisms-amenable to intervention-across psychiatric conditions and genetic risks.


Assuntos
Conectoma , Transtornos Mentais , Humanos , Pleiotropia Genética , Imageamento por Ressonância Magnética , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...